狠狠干影院/欧美午夜电影在线观看/高黄文/国产精品一区二区在线观看完整版

2020年北京中考數學試卷分值二篇

| 瀏覽次數:

試卷是紙張答題,在紙張有考試組織者檢測考試者學習情況而設定在規定時間內完成的試題。 也可以是資格考試中用以檢驗考生有關知識能力而進行人才篩選的工具, 以下是為大家整理的關于2020年北京中考數學試卷分值2篇 , 供大家參考選擇。

2020年北京中考數學試卷分值2篇

【篇一】2020年北京中考數學試卷分值

考研數學試卷題型及分值分布

1

試卷結構

選擇題:8題(每題4分);

填空題:6題(每題4分);

解答題:9題(每題10分左右);

滿分150分,考試時間3小時。

2

考試科目及分值

高等數學

84分,占56%

(4道選擇題,4道填空題,5道大題);

線性代數

33分,占22%

(2道選擇題,1道填空題,2道大題);

概率論與數理統計

33分,占22%

(2道選擇題,1道填空題,2道大題)。

注意:數學二不考概率論與數理統計,這一科的分值和試題全加到高等數學中。

考研數學時間分配

1.準確掌握答題時間

考試時長是3小時,答題的時間分配一般可以按照如下方式:選擇題和填空題約1小時,解答題約1小時40分鐘,預留20分鐘檢查和補做前面未做的題,以及作為機動和回旋余地。選擇題和填空題每題一般花4~5分鐘,如果一道題3分鐘仍無思路則應跳過。解答題每題一般花11分鐘左右,一道題如果4~5分鐘仍一籌莫展,則應跳過,暫時放棄。

該放棄時應敢于放棄、善于放棄,放棄后應盡快調整好自己的心態,要相信自己不會做的題別人很可能也不會做。切忌沒完沒了地糾纏于某個題,這將造成災難性的后果。

2.做題要細心

做題時一定要仔細,該拿分的一定要拿住。尤其是選擇題和填空題,因為體現的只是最后結果,一個小小的錯誤都會令一切努力功虧一簣。很多同學認為選擇和填空的分值不大,把主要的精力都放在了大題上面,但是需要引起大家注意的是:兩道選擇或填空題的分值就相當于一道大題,如果這類題目失分過多,僅靠大題是很難把分數提很高的。

做完一道選擇、填空題時只需要大家再仔細的驗算一遍即可,并不需要一定要等到做完考卷以后再檢查,而且這樣也不會花費大家很長時間。做大題的時候,對于前面說的完全沒有思路的題不要一點不寫,寫一些相關的內容得一點"步驟分"。

考研語錄

身體是考研的本錢,這段時期一定要保持規律的生活狀態,不要等到累趴下了才后悔莫及。現在你需要的是制定好最后的復習計劃并執行之,一定要保證復習的效率,同時注意勞逸結合,以最佳的狀態進入最后的沖刺階段。什么憂愁什么焦慮,通通都是浮云,從現在起,你要做個沒心沒肺的考研人。

【篇二】2020年北京中考數學試卷分值

2016考研數學試卷分值構成

近5年的數學大綱保持穩定,相對應的真題的題型與難度也是比較穩定的。因此對于線性代數這門考試科目,建議廣大學子抓住重點難點,把基礎知識“點”串聯成“面”,再配以典型題目構架成完善的知識“體”,這樣才能做到在考研這一戰場上于線代陣中將分數收入囊中而絲毫不費吹灰之力!

  一、行列式與矩陣

  行列式、矩陣是線性代數中的基礎章節,從命題人的角度來看,可以像潤滑油一般結合其它章節出題,因此必須熟練掌握。

  行列式的核心內容是求行列式——具體行列式的計算和抽象行列式的計算。其中具體行列式的計算又有低階和高階兩種類型,主要方法是應用行列式的性質及按行(列)展開定理化為上下三角行列式求解;而對于抽象行列式而言,考點不在如何求行列式,而在于結合后面章節內容的比較綜合的題。

  矩陣部分出題很靈活,頻繁出現的知識點包括矩陣各種運算律、矩陣相關的重要公式、矩陣可逆的判定及求逆、矩陣的秩的性質、初等矩陣的性質等。

  二、向量與線性方程組

  向量與線性方程組是整個線性代數部分的核心內容。相比之下,行列式和矩陣可視作是為了討論向量和線性方程組部分的問題而做鋪墊的基礎性章節,而其后兩章特征值和特征向量、二次型的內容則相對獨立,可以看作是對核心內容的擴展。

  向量與線性方程組的內容聯系很密切,很多知識點相互之間都有或明或暗的相關性。復習這兩部分內容最有效的方法就是徹底理順諸多知識點之間的內在聯系,因為這樣做首先能夠保證做到真正意義上的理解,同時也是熟練掌握和靈活運用的前提。

  這部分的重要考點一是線性方程組所具有的兩種形式——矩陣形式和向量形式;二是線性方程組與向量以及其它章節的各種內在聯系。

  (1)齊次線性方程組與向量線性相關、無關的聯系

  齊次線性方程組可以直接看出一定有解,因為當變量都為零時等式一定成立——印證了向量部分的一條性質“零向量可由任何向量線性表示”。

  齊次線性方程組一定有解又可以分為兩種情況:①有唯一零解;②有非零解。當齊次線性方程組有唯一零解時,是指等式中的變量只能全為零才能使等式成立,而當齊次線性方程組有非零解時,存在不全為零的變量使上式成立;但向量部分中判斷向量組是否線性相關、無關的定義也正是由這個等式出發的。故向量與線性方程組在此又產生了聯系——齊次線性方程組是否有非零解對應于系數矩陣的列向量組是否線性相關。可以設想線性相關、無關的概念就是為了更好地討論線性方程組問題而提出的。

  (2)齊次線性方程組的解與秩和極大無關組的聯系

  同樣可以認為秩是為了更好地討論線性相關和線性無關而引入的。秩的定義是“極大線性無關組中的向量個數”。經過 “秩→線性相關、無關→線性方程組解的判定”的邏輯鏈條,就可以判定列向量組線性相關時,齊次線性方程組有非零解,且齊次線性方程組的解向量可以通過r個線性無關的解向量(基礎解系)線性表示。

  (3)非齊次線性方程組與線性表示的聯系

  非齊次線性方程組是否有解對應于向量是否可由列向量組線性表示,使等式成立的一組數就是非齊次線性方程組的解。

  三、特征值與特征向量

  相對于前兩章來說,本章不是線性代數這門課的理論重點,但卻是一個考試重點。其原因是解決相關題目要用到線代中的大量內容——既有行列式、矩陣又有線性方程組和線性相關性,“牽一發而動全身”。

  本章知識要點如下:

  1. 特征值和特征向量的定義及計算方法就是記牢一系列公式和性質。

  2. 相似矩陣及其性質,需要區分矩陣的相似、等價與合同:

  3. 矩陣可相似對角化的條件,包括兩個充要條件和兩個充分條件。充要條件一是n階矩陣有n個線性無關的特征值;二是任意r重特征根對應有r個線性無關的特征向量。

  4. 實對稱矩陣及其相似對角化,n階實對稱矩陣必可正交相似于以其特征值為對角元素的對角陣。

  四、二次型

  這部分所講的內容從根本上講是特征值和特征向量的一個延伸,因為化二次型為標準型的核心知識為“對于實對稱矩陣,必存在正交矩陣 使其可以相似對角化”,其過程就是上一章相似對角化在為實對稱矩陣時的應用。

  本章知識要點如下:

  1. 二次型及其矩陣表示。

  2. 用正交變換化二次型為標準型。

  3. 正負定二次型的判斷與證明。

近5年的數學大綱保持穩定,相對應的真題的題型與難度也是比較穩定的。因此對于線性代數這門考試科目,建議廣大學子抓住重點難點,把基礎知識“點”串聯成“面”,再配以典型題目構架成完善的知識“體”,這樣才能做到在考研這一戰場上于線代陣中將分數收入囊中而絲毫不費吹灰之力!

  一、行列式與矩陣

  行列式、矩陣是線性代數中的基礎章節,從命題人的角度來看,可以像潤滑油一般結合其它章節出題,因此必須熟練掌握。

  行列式的核心內容是求行列式——具體行列式的計算和抽象行列式的計算。其中具體行列式的計算又有低階和高階兩種類型,主要方法是應用行列式的性質及按行(列)展開定理化為上下三角行列式求解;而對于抽象行列式而言,考點不在如何求行列式,而在于結合后面章節內容的比較綜合的題。

  矩陣部分出題很靈活,頻繁出現的知識點包括矩陣各種運算律、矩陣相關的重要公式、矩陣可逆的判定及求逆、矩陣的秩的性質、初等矩陣的性質等。

  二、向量與線性方程組

  向量與線性方程組是整個線性代數部分的核心內容。相比之下,行列式和矩陣可視作是為了討論向量和線性方程組部分的問題而做鋪墊的基礎性章節,而其后兩章特征值和特征向量、二次型的內容則相對獨立,可以看作是對核心內容的擴展。

  向量與線性方程組的內容聯系很密切,很多知識點相互之間都有或明或暗的相關性。復習這兩部分內容最有效的方法就是徹底理順諸多知識點之間的內在聯系,因為這樣做首先能夠保證做到真正意義上的理解,同時也是熟練掌握和靈活運用的前提。

  這部分的重要考點一是線性方程組所具有的兩種形式——矩陣形式和向量形式;二是線性方程組與向量以及其它章節的各種內在聯系。

  (1)齊次線性方程組與向量線性相關、無關的聯系

  齊次線性方程組可以直接看出一定有解,因為當變量都為零時等式一定成立——印證了向量部分的一條性質“零向量可由任何向量線性表示”。

  齊次線性方程組一定有解又可以分為兩種情況:①有唯一零解;②有非零解。當齊次線性方程組有唯一零解時,是指等式中的變量只能全為零才能使等式成立,而當齊次線性方程組有非零解時,存在不全為零的變量使上式成立;但向量部分中判斷向量組是否線性相關、無關的定義也正是由這個等式出發的。故向量與線性方程組在此又產生了聯系——齊次線性方程組是否有非零解對應于系數矩陣的列向量組是否線性相關。可以設想線性相關、無關的概念就是為了更好地討論線性方程組問題而提出的。

  (2)齊次線性方程組的解與秩和極大無關組的聯系

  同樣可以認為秩是為了更好地討論線性相關和線性無關而引入的。秩的定義是“極大線性無關組中的向量個數”。經過 “秩→線性相關、無關→線性方程組解的判定”的邏輯鏈條,就可以判定列向量組線性相關時,齊次線性方程組有非零解,且齊次線性方程組的解向量可以通過r個線性無關的解向量(基礎解系)線性表示。

  (3)非齊次線性方程組與線性表示的聯系

  非齊次線性方程組是否有解對應于向量是否可由列向量組線性表示,使等式成立的一組數就是非齊次線性方程組的解。

  三、特征值與特征向量

  相對于前兩章來說,本章不是線性代數這門課的理論重點,但卻是一個考試重點。其原因是解決相關題目要用到線代中的大量內容——既有行列式、矩陣又有線性方程組和線性相關性,“牽一發而動全身”。

  本章知識要點如下:

  1. 特征值和特征向量的定義及計算方法就是記牢一系列公式和性質。

  2. 相似矩陣及其性質,需要區分矩陣的相似、等價與合同:

  3. 矩陣可相似對角化的條件,包括兩個充要條件和兩個充分條件。充要條件一是n階矩陣有n個線性無關的特征值;二是任意r重特征根對應有r個線性無關的特征向量。

  4. 實對稱矩陣及其相似對角化,n階實對稱矩陣必可正交相似于以其特征值為對角元素的對角陣。

  四、二次型

  這部分所講的內容從根本上講是特征值和特征向量的一個延伸,因為化二次型為標準型的核心知識為“對于實對稱矩陣,必存在正交矩陣 使其可以相似對角化”,其過程就是上一章相似對角化在為實對稱矩陣時的應用。

  本章知識要點如下:

  1. 二次型及其矩陣表示。

  2. 用正交變換化二次型為標準型。

  3. 正負定二次型的判斷與證明。

凱程教育:

凱程考研成立于2005年,國內首家全日制集訓機構考研,一直從事高端全日制輔導,由李海洋教授、張鑫教授、盧營教授、王洋教授、楊武金教授、張釋然教授、索玉柱教授、方浩教授等一批高級考研教研隊伍組成,為學員全程高質量授課、答疑、測試、督導、報考指導、方法指導、聯系導師、復試等全方位的考研服務。

凱程考研的宗旨:讓學習成為一種習慣;

凱程考研的價值觀口號:凱旋歸來,前程萬里;

信念:讓每個學員都有好最好的歸宿;

使命:完善全新的教育模式,做中國最專業的考研輔導機構;

激情:永不言棄,樂觀向上;

敬業:以專業的態度做非凡的事業;

服務:以學員的前途為已任,為學員提供高效、專業的服務,團隊合作,為學員服務,為學員引路。

如何選擇考研輔導班:

在考研準備的過程中,會遇到不少困難,尤其對于跨專業考生的專業課來說,通過報輔導班來彌補自己復習的不足,可以大大提高復習效率,節省復習時間,大家可以通過以下幾個方面來考察輔導班,或許能幫你找到適合你的輔導班。

師資力量:師資力量是考察輔導班的首要因素,考生可以針對輔導名師的輔導年限、輔導經驗、歷年輔導效果、學員評價等因素進行綜合評價,詢問往屆學長然后選擇。判斷師資力量關鍵在于綜合實力,因為任何一門課程,都不是由一、兩個教師包到底的,是一批教師配合的結果。還要深入了解教師的學術背景、資料著述成就、輔導成就等。凱程考研名師云集,李海洋、張鑫教授、方浩教授、盧營教授、孫浩教授等一大批名師在凱程授課。而有的機構只是很普通的老師授課,對知識點把握和命題方向,欠缺火候。

對該專業有輔導歷史:必須對該專業深刻理解,才能深入輔導學員考取該校。在考研輔導班中,從來見過如此輝煌的成績:凱程教育拿下2015五道口金融學院狀元,考取五道口15人,清華經管金融碩士10人,人大金融碩士15個,中財和貿大金融碩士合計20人,北師大教育學7人,會計碩士保錄班考取30人,翻譯碩士接近20人,中傳狀元王園璐、鄭家威都是來自凱程,法學方面,凱程在人大、北大、貿大、政法、武漢大學、公安大學等院校斬獲多個法學和法碩狀元,更多專業成績請查看凱程網站。在凱程官方網站的光榮榜,成功學員經驗談視頻特別多,都是凱程戰績的最好證明。對于如此高的成績,凱程集訓營班主任邢老師說,凱程如此優異的成績,是與我們凱程嚴格的管理,全方位的輔導是分不開的,很多學生本科都不是名校,某些學生來自二本三本甚至不知名的院校,還有很多是工作了多年才回來考的,大多數是跨專業考研,他們的難度大,競爭激烈,沒有嚴格的訓練和同學們的刻苦學習,是很難達到優異的成績。最好的辦法是直接和凱程老師詳細溝通一下就清楚了。

建校歷史:機構成立的歷史也是一個參考因素,歷史越久,積累的人脈資源更多。例如,凱程教育已經成立10年(2005年),一直以來專注于考研,成功率一直遙遙領先,同學們有興趣可以聯系一下他們在線老師或者電話。

有沒有實體學校校區:有些機構比較小,就是一個在寫字樓里上課,自習,這種環境是不太好的,一個優秀的機構必須是在教學環境,大學校園這樣環境。凱程有自己的學習校區,有吃住學一體化教學環境,獨立衛浴、空調、暖氣齊全,這也是一個考研機構實力的體現。此外,最好還要看一下他們的營業執照。

推薦訪問: 北京 分值 中考

【2020年北京中考數學試卷分值二篇】相關推薦

工作總結最新推薦

NEW